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Abstract:  Available transfer capability (ATC) is a metric in power systems that determines the maximum amount of incremental 

power that can be transferred between two parts (usually seller and buyer) of the underlying power system without crossing any system 

thresholds. It is evaluated using 3 major metrics; i.e.; total transfer capability (TTC), transmission reliability margin (TRM) and 

existing transmission commitments. In order to determine these parameters, various methods are proposed by researchers, some of 

these methods are applicable to large scale grids, while others work effectively for small-to-medium grid deployments. In order to 

deploy a customized grid with effective ATC calculations, it is recommended that power system designers must select an optimum 

combination of these methods. For instance, Single Linear Step (SL) approach uses present state system information along with 

sensitivities embodied in the power transfer distribution factors (PTDF) and line outage distribution factors (LODF) in order to 

determine ATC values. The SL method is applicable only for small-scale power distribution systems, but can be extended via Iterated 

Linear Step (IL) method to incorporate controller changes for large scale systems. As system complexity increases, it becomes difficult 

to select the best method out of the given methods for ATC calculations. In order to reduce this complexity, the underlying text reviews 

different ATC calculation methods, and compares their statistical performance. Using this study, power system designers can identify 

most suited methods for their system deployment, and thus save time and cost for testing out different method. 

 

Index Terms – Available transfer capability, grid  power, linear, iterated, distribution. 

I. INTRODUCTION 

In order to determine available transfer capability (ATC) values for any electrical power system a wide-variety of calculations are 

needed. These calculations include evaluation of transmission plans, approval of source and destination nodes, Load Generation 

Balance Report (LGBR) analysis, previous year report evaluations, weather forecast data processing, previous year ATC patterns, 

etc. All these data values are given to different processing blocks. which anticipate network topology, perform capacity additions, 

anticipate substation loads, anticipate thermal generation, anticipate hydro-generation, etc. These anticipation blocks are 

combined with various planning criterion, operating limits, previous operation experience levels & credible contingencies; and are 

given to a simulation and analysis block. The output of this block is the total transfer capability of the system. When reliability 

margins are reduced from this total transfer capability, then the available transfer capability is evaluated. A diagrammatic 

representation of this process can be observed from figure 1, wherein different blocks are combined in order to obtain the final 

ATC values. 
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Figure 1. Exhaustive ATC calculation steps 

Different algorithms are proposed by researchers over the years for network topology prediction, capacity prediction, load 

prediction, generation prediction, etc., which assist in improving the efficiency of ATC calculations. Moreover, different 

simulation, analysis and optimization algorithms are also proposed by researchers for improving ATC calculation performance. A 

survey of these algorithms is mentioned in the next section of this text. This is followed by a statistical evaluation of these 

algorithms, in order to compare their performance. Finally, this text concludes with some interesting observations about these 

algorithms and recommends ways in which these algorithms can be further improved for better ATC evaluation accuracy. 

1. Literature Review 

Available transfer capability evaluation methods range from simple linear approximations to complex machine learning based 

models. In this section, a review of these techniques is done and their performance is discussed. The work in [1] discusses the use 

of several techniques for evaluation of ATC values, for instance, the work discusses a high-speed linear approximation method. 

This method is 25 times faster in case of large-scale power system deployments when compared with AC power factor (PF) 

techniques. But its accuracy is limited to high X/R values, and degrades exponentially for low to moderate X/R values. The 

accuracy also reduces when there load requirements are high, or when there are sudden changes in the load demand of the system. 

The most common linear approximation method is DC power flow method, which is governed using incremental power and 

voltage angle change equations 1 and 2 as follows, 

∆𝑃 =  ∑ 𝐵𝑗𝑖(∅𝑗 − ∅𝑖)

𝑁

𝑖=1

… (1) 

∆∅ = [𝐵′]−1 ∗ [∆𝑃] … (2) 

where, 𝑃 is the power generated between buses ‘i’ and ‘j’, B is the value of susceptance, ∅ is the angle between voltage buses. 

This method determines the value of power on the buses, and then determines the phase angle. If the power rises above given 

thresholds then overload condition is triggered and corrective actions are taken as per the system’s specifications. 

An enhancement to this method is repetitive power flow (RPF) and continuation power flow (CPF), each of these methods are 

capable enough to integrate voltage breakdowns & reductions, thermal loading effects, reactive power flow values, etc. while 

evaluating ATC. Due to the incorporation of so many parameters, the RPF and CPF methods require larger computational delays, 

and might give moderate accuracy for special case power transfers. To reduce these drawbacks the optimal power flow (OPF) 

method is used. This method combines the advantages of linear approximation method and RPF/CPF in order to incorporate fast 

changes, and requires low computational delay. But an optimal solution cannot be obtained due to the combination of these 

methods, therefore it is recommended to use OPF as an approximate solution for ATC calculations. The stability constrained 

method uses dynamic system behaviour for high accuracy of ATC results, but it is not applicable to real-time online applications 

due to its high complexity. 

To reduce these drawbacks, numerical methods are employed for ATC calculations. These methods can incorporate any level of 

uncertainty in the electrical power system and then too, produce accurate results. The main issue with numerical methods is the 

inability to deal with relativity among system components. Numerical methods must be employed for large-scale systems, 

because they need large amount of data for approximating their results. Small-scale systems reduce the accuracy and increase of 

the delay needed for numerical methods, as there are a large number of equations employed for this purpose. To reduce this 

computational complexity, the analytical method is employed. This method covers lesser number of uncertainties, but is faster 

than numerical method. But the accuracy of this method is reduced due to large number of assumptions and due to linearization. 

Similar to stability method, the approximate method also produces good accuracy results but is not used due to large 

computational delay.  
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It is observed that none of these methods are capable enough for reduced complexity and high accuracy ATC calculations. In 

order to remove this drawback, the neural network architecture is studied in [1]. Once trained the architecture can take any kind of 

input, and produce a highly accurate ATC output. The architecture for the said neural network can be observed from figure 2, 

wherein active (P) and reactive (Q) power levels are used by multiple layers of the network for improved ATC evaluations. 

 

Figure 1. ATC calculations via neural networks [1] 

The system requires large amount of data for ATC calculation training, but once trained the system can accurately identify ATC 

values for both small-scale and large-scale systems. This system uses non-linear calculations for calculation of ATC. An example 

of such a non-linear ATC calculation tool can be observed from [2], wherein the system is able to accurately find out ATC values 

for 15000 bus system. Thereby suggesting the use of neural networks and other machine learning models for such calculations.  

Accuracy of neural networks can be improved via Levenberg- Marquardt (LM) algorithm as suggested in [3], wherein a high 

accuracy ATC evaluation system for 75 bus Indian power system and IEEE 30 bus system is discussed. The work also discusses 

the use of Genetic Algorithm (GA) for improving the efficiency of ATC calculations. The algorithm uses OPF method and tries to 

maximize the total power generated at source side and total power consumed at destination side. It also tries to reduce generation 

cost as well, via the following fitness equation, 

𝑓 = (𝑃𝑔 + 𝑃𝑐) ∗ 𝐶−1 … (3) 

where, 𝑃𝑔 is the total generated power, 𝑃𝑐 is the total consumed power and 𝐶 is the cost of power generation. The GA tries to 

maximize the fitness value, thereby increasing the values of power generated, power consumed and reducing the value of cost of 

generation in any given solution.  

Another example of neural network for ATC evaluation can be observed from [4], wherein phasor measurement unit or PMU data 

is utilized. The system uses a radial basis function (RBF) kernel for evaluation of ATC values through parameters like current 

angle, current magnitude, voltage angle and voltage magnitude. Internal network diagram for the given neural network can be 

observed from figure 3, wherein these features along with their output ATC values can be seen. 

 

Figure 3. ATC evaluation using Neural Networks [4] 
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The feature extraction unit uses a sparse fitting algorithm (SFA) to select most dominant current and voltage features via 

Broyden–Fletcher–Goldfarb–Shanno quasi-Newton optimization. The model has low error in the range of 0.001, and large 

training delay, but can be applied for real-time small- and large-scale systems for ATC calculations. Similar performance is 

observed via the use of flexible demand response (FDR) technique as mentioned in [5], wherein deferrable demand response 

(DDR), switchable demand response (SDR) and flexible demand response (FDR) values are combined with renewable energy 

generators for day-ahead market bidding. These historical values are used on the next day for real-time market clearing in order to 

evaluate ATC values. The schematic diagram for these evaluations can be observed from figure 4, wherein previous day and 

current day response values are used to evaluate real-time ATC. 

 

Figure 4. Market bidding for ATC evaluation [5] 

Moderate level of accuracy is obtained via the use of this technique, and one day delay is incurred while using it. The overall 

performance of this technique can be improved via the use of neural networks.  

ATC calculations are majorly affected by rapid changes in the deployed system configuration. Some of these configuration 

changes are described in [6], these changes include but are not limited to, 

 Generator rescheduling, wherein active power rescheduling of generator nodes changes ATC levels very 

easily. These changes can be tackled with the help of Genetic Algorithm (GA) along with Teacher 

Learner based optimization (TLBO). 

 Nodal pricing or location pricing for congestion management can also cause shifts in ATC, which can be 

handled using neural networks. 

 Distributed generator placement also affects ATC calculations, and can be handled via particle swarm 

optimization (PSO). 

 Thyristor controlled phase shift transformer for congestion management in power systems also shifts 

ATC values, and must be countered via the use of GA or PSO methods. 

Other algorithms mentioned in [6], which include GA, PSO, NN, Gravitational Search Algorithm (GSA) and Artificial Bee 

Colony Optimization (ABC) can be used to further improve efficiency of ATC calculations. The effectiveness of these methods 

can be further improved via the use of bi-level modelling for ATC evaluation as mentioned in [7], wherein the calculation of TTC 

is done using mathematic program with equilibrium constraints (MPEC), and then these MPEC values are given to Karush-Kuhn-

Tucher (KKT) optimality evaluation, and then to mixed-integer linear programming (MILP) model. Both these models aim at 

reducing the errors in TTC to improve ATC evaluation. The system divides the output of system operating point into upper and 

lower level as observed from figure 5, wherein at upper-level ATC is evaluated, while at lower-level economic dispatch (ED) and 

power flow is estimated. 

 

Figure 5. ATC evaluation using bi-level operations [7] 
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The system showcases moderate level accuracy, with moderate delay of evaluation and thus is suited for small to medium scale 

systems. This work can be extended via the use of probabilistic transmission capacity margins (PTCM) as discussed in [8]. Here, 

artificial neural networks (ANNs) are used to predict future load generation to evaluate dynamic ATC (DATC) values. The result 

of this ANN is given to a dragon fly algorithm for improving the efficiency of ATC calculations. It is observed that the proposed 

approach has moderate accuracy, high delay and is applicable only for renewable energy sources like solar & wind-based 

generation systems. The dragon fly algorithm works using the following steps, 

 Select any hourly reading data for ATC evaluation 

 Use previous temporal data for evaluation of load generation for the given hour’s readings 

 Initialize number of iterations, number of dragon flies, and learning rate 

 Distribute the dragon flies randomly in the network, such that each dragon fly is at a different position in 

the network. 

 Evaluate the value of ATC for this hour using standard ATC formula for each dragon fly 

 Update the values of separation, alignment, cohesion and attraction in order to improve dragon fly 

location. 

 Update the dragon fly velocity using velocity of nearby dragon flies, and repeat this process for all 

iterations 

 At the end of the last iteration, select the output with highest ATC value, and use that configuration 

The dragonfly algorithm’s accuracy performance can be extended via the use of differential evolutionary algorithm and support  

vector machines (SVM) as suggested in [9], wherein transmission capacity margins are incorporated to ATC calculations. The 

work suggests iterative error reduction for ATC calculations, wherein minimum mean squared error (MMSE) is minimized 

iteratively in order to improve ATC evaluation accuracy. The underlying SVM uses a combination of multiple neurons at input 

and hidden layers along with a linear output layer in order to obtain the final ATC value as observed from figure 6, wherein 

connectivity between these layers is showcased. 

 

Figure 6. ATC calculations via SVM [9] 

The SVM model tends to improve the accuracy for both small-scale and large-scale deployments, but requires large delays due to 

iterative computations and error reduction. It is observed that although SVM based differential evolution algorithm requires larger 

delays, but it is more accurate when compared to neural network-based ATC deployments. But the SVM model does not take into 

consideration small-signal stability, which reduces its accuracy under certain network load conditions. To tackle this issue, the 

work in [10] proposes a sequential quadratic programming (SQP) method, that combines adaptive gradient sampling (AGS) for 

improved ATC calculation accuracy. The work is deployed on IEEE 39 bus system, and showcases high performance in terms of 

ATC accuracy, and minimizes evaluation delay due to reduction and parallelization of gradient evaluation while calculating 

internal ATC parameters. An extension to this method, that uses particle swarm optimization (PSO) is observed from [11]. The 

method also takes into consideration small and large-scale changes in the power system loads, and determines values of ATC with 

high efficiency. Similar to [9], the PSO model also requires large training and evaluation delays due to its iterative nature. PSO, 

SVM and NN have similar accuracy for ATC calculations, but NN outperforms both PSO and SVM for large-scale systems, while 

SVM is better for small-scale systems.  

A different approach to ATC calculations via network trade-off is mentioned in [12]. In this approach a two-level architecture for 

controlling of interconnected power systems is mentioned and observed in figure 7, wherein a control centre to receive data from 

all power systems is deployed. This approach works using the following steps, 

 Perform state estimation to evaluate total transfer capability 

 Define a single-rule base for additional loading of controlled lines on the system 

 These rules are combined with initial line data and given to an Artificial Neural Network (ANN) 

 Results from ANN are given to a weighting co-efficient, which results into a new value of transfer 

capacity 

 This capacity is compared with the initial value to evaluate minimum mean squared error (MMSE) 
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 Based on this MMSE value, the information is sorted for each electrical power system (EPS) 

 This information is given to each EPS for modification of generation instructions, procedure formation 

and data capture modules 

 This new information is then given to a initial data generation block, to form new operation constraints 

 The process is repeated, and the neural network is re-trained with these new values from each power 

system 

 Based on these new values MMSE is evaluated, reduced and thereby accuracy of ATC evaluation is 

increased. 

 

Figure 7. A control centre approach for ATC evaluation [12] 

An extension to this work is mentioned in [13], wherein ANN is combined with Flexible AC Transmission System devices 

(FACTS devices) for improving the estimation of their online parameters. It optimizes the performance of Thyristor controlled 

series compensation (TCSC) and static VAR compensation (SVC) via neural network for better performance of ATC. As a result, 

the method possesses high accuracy for large-scale systems, but requires large delay values due to its iterative nature. Another 

application of TCSC for ATC evaluation is mentioned in [14], wherein Genetic Algorithm (GA) is used for optimization. When 

compared to NN, GA has similar accuracy performance, but has reduced delay for small-to-moderate scale systems. But the 

performance of NN is better for large-scale systems, due to incorporation of a large amount of network conditions. In both cases, 

GA has lower operation delay than NN, but NN is preferred for large-scale systems. Most of these optimization algorithms use 

Optimal power flow (OPF) method for evaluation of ATC, but the work in [15] suggests the use of repeated power flow (RPF) 

and power transfer distribution factor (PTDF) for optimization using bilateral transactions. They suggest that PTDF method can 

significantly reduce computational delay of any optimization method, by keeping similar ATC performance for large-scale 

systems. Thus, it is recommended that PTDF method be incorporated with machine learning models for improving the system’s 

real-time performance. A similar observation is made in [16], wherein PTDF is compared with methods like DCPF, LODF, GSF, 

RPF, CPF and OPF. It is observed that RPF, CPF and OPF methods have better coverage for ATC evaluations as seen from table 

1, and these methods are also more stable when compared with other methods. 
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Table 1. Comparison of different methods based on parametric coverage [16] 

Method Thermal Voltage Stability 

DC Power Flow (DCPF) √ × × 

Line Outage Distribution Factor (LODF) √ × × 

Power Transfer Distribution Factor (PTDF) √ × × 

Generation Shifting Factor (GSF) √ × × 

Continuation Power Flow (CPF) √ √ √ 

Repeated Power Flow (RPF) √ √ √ 

Optimal Power Flow (OPF) √ √ √ 

These methods can also be used in tandem with optimization algorithms like PSO and its variants. The work in [17] suggests 

combination of Metaheuristic Evolutionary Particle Swarm Optimization (MEPSO) with OPF for improving its ATC evaluation 

efficiency. Flow of the MEPSO algorithm can be observed from figure 8, wherein initial location optimization is done for better 

ATC calculations. It is observed that MEPSO method outperforms AC Power Transfer Distribution Factor (ACPTDF) and 

DCPTDF methods in terms of accuracy, but requires larger computational delays due to iterative error reduction. These methods 

are applied to FACTS devices, which makes them applicable for large-scale power system deployments. Apart from the 

considerations done by these methods, FACTS devices have a large number of micro and macro device considerations, which 

include shunt controllers, static compensation (STATCOM) controllers, unified power flow controllers (UPFC), integrated power 

flow controllers (IPFC), etc. Consideration of these devices for ATC calculations is done in [18], and it is observed that OPF 

method when combined with optimization algorithms can provide better ATC values when compared with other algorithms. 

Estimation of ATC can be improved via power system frequency estimation as suggested in [19], wherein finite impulse response 

(FIR) filters are used for frequency estimation. 

 

Figure 8. Flow of the MEPSO algorithm for ATC calculations [17] 

Speed of ATC calculations can be improved via parallelization frameworks as mentioned in [20]. Here, Fork/Join method is 

combined with initialization of parameters, setting of faults, integrity detection of networks, identification of reasonableness and 

analysing results. This module aims at improving ATC evaluation speeds by 15% when compared with non-parallel workflows. 

An application of this model can be observed from [21], where it is applied to wind flow ATC calculations, but can be used for 

other generation sources as well. Synchro-phasor Measurements (SPM) can also be used for high-speed ATC calculations as 

observed from [22], wherein New England 39-bus Test System is used for testing. The SM method allow both small and large-

scale systems to have moderate ATC evaluation accuracy, and low delay. It is still recommended that OPF method be combined 

with SM in order to improve ATC accuracy as observed in [23], wherein load flow method is compared with OPF method for 

http://www.ijcrt.org/


www.ijcrt.org                                                                     © 2021 IJCRT | Volume 9, Issue 3 March 2021 | ISSN: 2320-2882 

IJCRT2103551 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 4791 
 

different FACTS devices like STATCOM and UPFC. It is observed that OPF has better parametric efficiency, and requires 

similar delay when compared with load flow and other methods. OPF can be further improved via cuckoo search algorithm (CSA) 

as discussed in [24], wherein stochastic optimizations are applied for ATC calculations. It is further observed that CSA algorithm 

outperforms PSO, evolutionary programming (EP) and grey wolf optimization (GWO) for ATC evaluation.  

An extension to [15] is mentioned in [25], wherein bilateral trading transactions are used for ATC evaluation via PTDF method. 

Flow of this system can be observed from figure 9, wherein minimum transfer limits are used for finding out ATC values. It is 

observed that this method is useful for IEEE 6 Bus systems, and can perform better for low-scale electrical power systems, but 

doesn’t perform well for higher level bus systems. References of low, medium and large-scale power systems for ATC evaluation 

can be observed from [26], wherein California Independent System Operator Corporation (CASIO) standard for these evaluations 

is defined.  The efficiency of PTDF method can be further extended using an intelligent Genetic Algorithm (IGA) as 

defined in [27], wherein FACTS devices are deployed for testing. The system also considers different outages for evaluation of 

ATC, and it is observed that static VAR compensation devices have good outage resilience, and thus have better ATC calculation 

efficiency. An extension to IGA can be observed in [28], wherein cat swarm optimization (CSO) model is used. The model is 

applied to IEEE 14 and 24 bus systems, and has good level of efficiency for both SVC and TCSC systems. The system also uses 

stochastic process modelling for reducing minimum mean square errors (MMSE), and thus has high accuracy but requires large 

delays for processing. 

 

Figure 9. Bilateral transactions for ATC evaluation [25] 

Other optimization models like Interval Optimization, crow search optimization, bacterial forging optimization, etc. are 

mentioned in [29], [30] and [31]. All these models have high accuracy for both small and large-scale systems, but requires large 

delays for evaluation. It can be observed that convolutional neural networks have not yet been applied for ATC evaluations due to 

their computational complexity, but it can be an alternative to these low-speed systems. A fuzzy statistical evaluation of these 

methods can be observed from the next section. 

2. Fuzzy Statistical Analysis 

In order to compare the reviewed methods in terms of delay, accuracy of ATC evaluation and scale of power system, this text 

converts the numerical values mentioned in the referred texts into fuzzy values. Delay and accuracy metrics are categorized into 

low, medium (M) and high (H), while scale of the system is categorized into small (S), medium (M) and large (L). This is done 

because all the systems are deployed on different IEEE bus systems, and thus do not have a common comparison ground. The 

following table 2 compares these methods and evaluates their fuzzy statistical performance.  
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Table 2. Fuzzy statistical comparison of different ATC evaluation methods 

Method Delay Accuracy Scale 

High speed linear approximation [1] L M S & M 

RPF and CPF [1] M M M 

OPF [1] M H M & L 

Numerical method [1] H M S & M 

NN [1] M H S, M & L 

LM NN [3] M H S, M & L 

GA with OPF [3] H H S & M 

PMU with RBF [4] H H M 

SFA [5] H H H 

GA, PSO, NN, GSA & ABC [6] H M S & M 

Bi-level operations [7] M M S, M & L 

PTCM & NN [8] H H M & L 

SVM [9] H VH S, M & L 

SQP with AGS [10] M H S, M & L 

PSO [11] M M M 

ANN with 2-level architecture [12] H H M & L 

FACTS with NN [13] M H M & L 

GA [14] H H M & L 

RPF & PTDF [15] L M M & L 

MEPSO with OPF [17] H H S, M & L 

OPF with FACTS [18] M H S, M & L 

Parallelization [19] L H S & M 

SPM [22] M M S & M 

OPF with SPM [23] M H S & M 

CSA [24] H H S & M 
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CSO [28] H H S 

From the comparison it is observed that SVM outperforms other methods like NN, CSO, CSA, GA and PSO in terms of ATC 

evaluation accuracy. SVM requires large delays due to its iterative behaviour, but this delay can be reduced by integration of high 

speed PTDF methods to SVM. Furthermore, other methods like Parallelization, linear approximation can also be integrated with 

SVM for reducing its delay. It is recommended that ANN methods should be extended using SVM and OPF methods for further 

improving their performance. 

3. Conclusion and future scope 

Using this review, it is observed that simple method for ATC estimation like linear approximation, OPF, RPF PTDF and CPF do 

not have high accuracy. Due to this, optimization algorithms like artificial neural networks, support vector machines, Genetic 

Algorithms, etc. have been deployed. These methods have good performance for both FACTS and non-FACTS devices, which 

makes them an ideal candidate for further study and exploration. These methods have large delays due to their iterative behavior, 

but this delay can be reduced by techniques parallelization, integration of OPF, etc. into the optimization process. It is further 

observed that none of these methods make use of convolutional neural networks (CNN) for ATC estimations, which provides 

researchers with a major research gap in this field. CNNs have proven to be high speed, low error and high consistency networks 

for any kind of pattern-based evaluation. It is recommended that CNN must be modelled and its performance must be evaluated in 

order to improve overall ATC evaluation performance. 
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